Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin.

نویسندگان

  • Elizabeth E A Bull
  • Hideaki Dote
  • Kristin J Brady
  • William E Burgan
  • Donna J Carter
  • Michael A Cerra
  • Kelli A Oswald
  • Melinda G Hollingshead
  • Kevin Camphausen
  • Philip J Tofilon
چکیده

PURPOSE Because of the potential for affecting multiple signaling pathways, inhibition of Hsp90 may provide a strategy for enhancing tumor cell radiosensitivity. Therefore, we have investigated the effects of the orally bioavailable Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) on the radiosensitivity of human tumor cells in vitro and grown as tumor xenografts. EXPERIMENTAL DESIGN The effect of 17-DMAG on the levels of three proteins (Raf-1, ErbB2, and Akt) previously implicated in the regulation of radiosensitivity was determined in three human solid tumor cell lines. A clonogenic assay was then used to evaluate cell survival after exposure to 17-DMAG followed by irradiation. For mechanistic insight, the G(2)- and S-phase checkpoints were evaluated in 17-DMAG-treated cells. Finally, the effect of in vivo administration of 17-DMAG in combination with radiation on the growth rate of xenograft tumors was determined. RESULTS 17-DMAG exposure reduced the levels of the three radiosensitivity-associated proteins in a cell line-specific manner with ErbB2 being the most susceptible. Corresponding concentrations of 17-DMAG enhanced the radiosensitivity of each of the tumor cell lines. This sensitization seemed to be the result of a 17-DMAG-mediated abrogation of the G(2)- and S-phase cell cycle checkpoints. The oral administration of 17-DMAG to mice bearing tumor xenografts followed by irradiation resulted in a greater than additive increase in tumor growth delay. CONCLUSIONS These data indicate that 17-DMAG enhances the in vitro and in vivo radiosensitivity of human tumor cells. The mechanism responsible seems to involve the abrogation of radiation-induced G(2)- and S-phase arrest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Therapeutics, Molecular Targets, and Chemical Biology Heat Shock Protein 90 Inhibitors: New Mode of Therapy to Overcome Endocrine Resistance

Aromatase inhibitors are important drugs to treat estrogen receptor α (ERα)–positive postmenopausal breast cancer patients. However, development of resistance to aromatase inhibitors has been observed. We examined whether the heat shock protein 90 (HSP90) inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) can inhibit the growth of aromatase inhibitor–resistant breast canc...

متن کامل

p53 independent radio-sensitization of human lymphoblastoid cell lines by Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin.

Inhibition of heat shock protein 90 (Hsp90) is an attractive modality for cancer therapy. Recent studies presented that an Hsp90 inhibitor, 17AAG (17-allylamino-17-demethoxygeldanamycin), enhanced tumor radio-sensitivity, while this was not observed in normal cells. One of the studies reported that the effect of this drug was only observed in tumor cells carrying the wild-type p53 gene, thus de...

متن کامل

Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition

Due to the lack of effective treatment, hepatocellular carcinoma (HCC) is one of the malignancies with low survival rates worldwide. Combination of hyperthermia and chemotherapy has shown promising results in several abdominal tumours, but high expression of HSP90 in tumours attenuated the efficacy of hyperthermia. Thus a combination of hyperthermia and inhibition of HSP90 might be a feasible t...

متن کامل

Heat shock protein 90 inhibitors: new mode of therapy to overcome endocrine resistance.

Aromatase inhibitors are important drugs to treat estrogen receptor alpha (ERalpha)-positive postmenopausal breast cancer patients. However, development of resistance to aromatase inhibitors has been observed. We examined whether the heat shock protein 90 (HSP90) inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) can inhibit the growth of aromatase inhibitor-resistant bre...

متن کامل

ErbB3 expression predicts tumor cell radiosensitization induced by Hsp90 inhibition.

The ability to identify tumors that are susceptible to a given molecularly targeted radiosensitizer would be of clinical benefit. Towards this end, we have investigated the effects of a representative Hsp90 inhibitor, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17DMAG), on the radiosensitivity of a panel of human tumor cell lines. 17DMAG was previously shown to enhance the radiosensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 10 23  شماره 

صفحات  -

تاریخ انتشار 2004